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A new method to evaluate the weights of resonance structures from molecular orbital wave function is proposed,
which is based on the second quantization of singlet-coupling. The present method is useful to analyze molecules
of which the electronic structures are well localizable. The evaluation is carried out through localization of
molecular orbitals followed by algebraic calculation of density matrices. This method is applied to H2O,
H3O+, and BH3. The calculated weights of covalent and ionic structures are in excellent agreement with
those of the previous works and our chemical intuition.

We have traditionally considered that molecules are built up
of atoms that link each other through chemical bonding. The
nature of the chemical bond has been discussed in terms of
resonance between covalent and ionic-type interactions in many
cases. The concepts of covalency, ionicity, and resonance still
play important roles in chemistry, because these enable us to
classify the various molecules according to the nature of the
chemical bond. In this sense, it is highly desirable to present a
method by which results of electronic structure calculations of
molecules are interpreted with these chemical concepts.

Most of modern ab initio calculations are based on the
molecular orbital (MO) method. However, it is hard to obtain
the weights of covalency and ionicity from the wave function
calculated by the MO method, because MOs are delocalized
over the whole molecule, and the wave function is quite different
from the valence bond wave function that directly describes
covalent-ionic resonance. Various methods have been devel-
oped to make up for deficiencies in the MO method. Good
examples are population analysis1-3 and bond order indexes.4-6

One goal of extension of these developments is to calculate the
weights of each resonance structure from the wave function.

Many evaluation methods of weights of resonance structures
from the wave function have been developed over a long period.
The most important of this research was reported by Hiberty et
al.7 They constructed complete sets of valence bond wave
functions from atomic orbital basis sets, and then, a Hartree-
Fock (HF) wave function was expanded with these valence bond
wave functions. This is one of the important pioneering works,
though not practical enough. Recently, natural resonance theory8

(NRT), which was based on natural bond orbital (NBO)
analysis,3 has been developed by Glendening and Weinhold.
Additionally, Karafiloglou reported another method to calculate
weights of resonance structures from NBO analysis.9 In this
paper, we would like to present a new method to calculate the
weights of resonance structures from HF wave function. The
range of application of the present method is limited to the
molecular orbital wave functions in which each MO can be
localized to either one- or two-center orbitals. At the present

stage, it is difficult to apply the method to molecules involving
more than three-center LMOs, such as conjugated molecules.
However, for molecules for which the electronic structures are
well localizable, the method is a simple and useful tool to link
MOs with the concept of resonance.

The first-order density matrix (PS)µν of the LCAO-MO
determinant|Ψ〉 is given by eq 1

whereøν
+ is creation operator related to atomic orbital (AO)

basisøν and æµ
- is annihilation operator related to the bior-

thogonal AO basisæµ. Cµ,i is the LCAO coefficient of MOi,
andSµν is the element of the overlap matrix.

|Ψ〉 is invariant to localization (unitary transformation) among
doubly occupied orbitals. When we use localized MOs (LMOs)
φi

local ) ∑µLµ,iøµ, we can define local density matrices for the
orbital i (i ) 1,2,...) as follows

whereLµ,i is LCAO coefficient of LMOi. It is noted that these
local density matrices hold the idempotency and the number of
electrons is conserved in each LMO.

According to eqs 3 and 4, we can obtain a simple equation
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Importantly, (PS)µν
i (PS)νµ

i is expressed as the expectation
value of an operator.

In the case ofµ * ν, the sum of 1/4(PS)µν
i (PS)νµ

i and
1/4(PS)νµ

i (PS)µν
i represents the weight of the electronic structure

in which two electrons are singlet-coupled between AOsµ and
ν. In the case ofµ * ν, 1/4(PS)µµ

i (PS)µµ
i is that of the electronic

structure in which two electrons occupy the same AOµ. Thus,
2wMN

i ) wMN
i + wNM

i represents the weight of the electronic
structure in which two electrons inφi

local are shared betweenM
and N atoms, andwMM

i represents that of the electronic
structure in which two electrons inφi

local belong to atomM.
Whenφi

local is a two-center LMO between A and B atoms, two
electrons are localized in the bond between A and B, and we
can convert eq 5 to eq 8.

The termwj i is the sum of allwMN
i in which (M, N) is not (A or

B) at the same time. This term corresponds to a higher-body
correlation term and is virtually very small as shown below.
The weights of ionic and covalent bonds betweenA andB can
be calculated by using eq 8.wAA

i represents the weight of the
ionic structure (A-B+), wBB

i represents that of the ionic struc-
ture (A+B-), and 2wAB

i represents that of the covalent structure

(A-B). If each MO can be localized into either one-center or
two-center orbital, the weights of the resonance structures of a
whole molecule can be obtained by multiplication of the weights
of the participating two-center bonding between two atoms.

TABLE 1: Weights of Each Resonance Structure in H2O
Computed with 6-31G(d,p)

1
4
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TABLE 2: Weights of Resonance Structures of BH3 and
H3O+ Calculated with Various Basis Setsb

a The results by Hiberty et al.7 b In each structure, upper and lower
values represent X) B and X) O, respectively. BS1, BS2, BS3, and
BS4 are, respectively, STO-3G, 6-31G, 6-31G(d,p), and 6-311G(d,p).
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The choice ofwi in each LMOi is actually related to choice of
valence bond configuration. Because sum of the values in{} is
1 in eq 9, the total sum of the weights calculated by the present
procedure is always 1. It is confident that all the weights
continuously and reasonably change with respect to nuclear
coordinate even if the symmetry is broken.

This method was applied to H2O, BH3, and H3O+. Two two-
center LMOs for H2O and three for BH3 and H3O+ are selected.
All calculations were performed with the program code GAMESS
modified by us.

At first, we apply the method to the H2O (H1-O-H2)
molecule using 6-31G(d,p) basis sets.10 We obtained two two-
center valence LMOs,φ4

local andφ5
local, and then calculated the

weights of covalent and ionic bonds for OH1 and OH2 using
eqs 6 and 8. In the present case, eq 9 is written as

For example, the weight of the structure H1+O--H2 was
obtained aswOO

4 × 2wOH2
5 . The weights of all resonance

structures are shown in Table 1. “Other” represents the sum of
all terms containingwj i. The most important structure is H+O--
H for which the weight is 0.399. The weights of the ionic
structures which consist of O-H+ are larger than that of O+H-.
This result agrees well with our chemical intuition. It is noted
that the “Other” term is very small.

The results of BH3 and H3O+ are shown in Table 2. The
results by our method with STO-3G basis sets are in excellent
agreement with those by Hiberty et al.7 Characteristic differences
are observed between BH3 and H3O+. In BH3, the most
important resonance structure consists of two covalent bonds
(B-H) and one ionic (B+H-) bond. On the other hand, in H3O+,
the most important resonance structure consists of one covalent
bond (O-H) and two ionic bonds (O-H+). These results are

consistent with the fact that the electronegativity of oxygen is
larger than that of boron.

In both, the results from various basis sets are little different.
Thus, the weights computed by the present method minimally
depend on the selection of basis sets.

In this paper, the method was used in conjunction with
Mulliken type of (PS) matrices. However, the analysis by this
method can be successfully combined with density matrices
based on Lo¨wdin orbitals in the case of simple molecule. Both
Löwdin and Mulliken types of density matrices produced
qualitatively similar results. The comparison between two kinds
of density matrices and the inspection of the basis set depen-
dency will be presented in the forthcoming paper.
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